在人工智能與高性能計(jì)算深度融合的時(shí)代,科學(xué)研究正經(jīng)歷一場(chǎng)深刻的數(shù)據(jù)革命。面對(duì)生物醫(yī)藥、材料科學(xué)等領(lǐng)域爆炸式增長(zhǎng)的多模態(tài)、高維度數(shù)據(jù),傳統(tǒng)的數(shù)據(jù)處理與分析模式已難以滿足高效、精準(zhǔn)的科研需求。火山引擎多模態(tài)數(shù)據(jù)湖解決方案在深勢(shì)科技的成功落地與應(yīng)用,為解決這一核心挑戰(zhàn)提供了創(chuàng)新范式,顯著提升了科研數(shù)據(jù)處理與價(jià)值挖掘的整體效能。
深勢(shì)科技作為AI for Science(科學(xué)智能)領(lǐng)域的領(lǐng)軍企業(yè),致力于運(yùn)用人工智能與分子模擬算法,為藥物研發(fā)、材料設(shè)計(jì)等復(fù)雜科研問(wèn)題提供解決方案。其科研工作流天然涉及海量的分子結(jié)構(gòu)數(shù)據(jù)、模擬軌跡、物性參數(shù)、文獻(xiàn)文本及圖像等多源異構(gòu)數(shù)據(jù)。如何高效存儲(chǔ)、管理、關(guān)聯(lián)并分析這些多模態(tài)數(shù)據(jù),打通從數(shù)據(jù)到洞察的“最后一公里”,是提升研發(fā)效率與創(chuàng)新成功率的關(guān)鍵。
火山引擎多模態(tài)數(shù)據(jù)湖的引入,為深勢(shì)科技構(gòu)建了統(tǒng)一的科研數(shù)據(jù)基座。該方案的核心優(yōu)勢(shì)在于:
- 統(tǒng)一的存儲(chǔ)與元數(shù)據(jù)管理:打破了過(guò)去不同類型數(shù)據(jù)存儲(chǔ)于孤立系統(tǒng)(如對(duì)象存儲(chǔ)用于軌跡文件、數(shù)據(jù)庫(kù)用于結(jié)構(gòu)化結(jié)果)的藩籬。數(shù)據(jù)湖提供了一個(gè)中心化的存儲(chǔ)池,并通過(guò)精細(xì)的元數(shù)據(jù)管理,將分子ID、模擬參數(shù)、實(shí)驗(yàn)條件、文獻(xiàn)來(lái)源等信息進(jìn)行有效關(guān)聯(lián),實(shí)現(xiàn)了數(shù)據(jù)資產(chǎn)的全局可視與可理解。
- 強(qiáng)大的多模態(tài)數(shù)據(jù)處理能力:針對(duì)科學(xué)數(shù)據(jù)的特點(diǎn),該數(shù)據(jù)湖方案集成了高性能計(jì)算框架與數(shù)據(jù)處理引擎。它能夠無(wú)縫銜接深勢(shì)科技的分子動(dòng)力學(xué)模擬等計(jì)算任務(wù),自動(dòng)攝取和預(yù)處理產(chǎn)生的TB甚至PB級(jí)軌跡數(shù)據(jù);支持對(duì)文本(科研文獻(xiàn))、圖譜(分子結(jié)構(gòu)圖)等進(jìn)行特征提取與向量化,為后續(xù)的AI模型訓(xùn)練與分析奠定基礎(chǔ)。
- 高效的分析與協(xié)同平臺(tái):基于數(shù)據(jù)湖,研究人員可以運(yùn)用統(tǒng)一的查詢語(yǔ)言或接口,跨模態(tài)地關(guān)聯(lián)分析數(shù)據(jù)。例如,快速檢索具有特定物性的所有分子及其相關(guān)的模擬條件與文獻(xiàn)證據(jù)。這不僅加速了科學(xué)發(fā)現(xiàn)的過(guò)程,也促進(jìn)了不同團(tuán)隊(duì)、不同學(xué)科背景研究人員之間的數(shù)據(jù)共享與協(xié)作,避免了重復(fù)工作和數(shù)據(jù)孤島。
- 彈性可擴(kuò)展的云原生架構(gòu):依托火山引擎的云計(jì)算基礎(chǔ)設(shè)施,該數(shù)據(jù)湖具備極致的彈性擴(kuò)展能力,能夠根據(jù)科研項(xiàng)目計(jì)算任務(wù)的數(shù)據(jù)吞吐需求,動(dòng)態(tài)調(diào)配存儲(chǔ)與計(jì)算資源,實(shí)現(xiàn)成本與性能的最優(yōu)平衡,尤其適用于突發(fā)性的大規(guī)模模擬計(jì)算場(chǎng)景。
此次合作的落地,其價(jià)值已初步顯現(xiàn)。對(duì)深勢(shì)科技而言,數(shù)據(jù)處理管線得以自動(dòng)化與標(biāo)準(zhǔn)化,研究人員從繁瑣的數(shù)據(jù)搬運(yùn)、格式轉(zhuǎn)換和基礎(chǔ)管理中解放出來(lái),更專注于核心的算法創(chuàng)新與科學(xué)假設(shè)驗(yàn)證。數(shù)據(jù)處理周期顯著縮短,數(shù)據(jù)資產(chǎn)的復(fù)用率和價(jià)值密度大幅提升,為新藥研發(fā)管線的高效推進(jìn)提供了堅(jiān)實(shí)的數(shù)據(jù)驅(qū)動(dòng)支撐。
火山引擎多模態(tài)數(shù)據(jù)湖與深勢(shì)科技AI for Science平臺(tái)的深度融合,將持續(xù)演化。它不僅是存儲(chǔ)與計(jì)算的容器,更將成長(zhǎng)為匯聚科研知識(shí)、孵化智能模型的“數(shù)字反應(yīng)堆”。通過(guò)持續(xù)積累高質(zhì)量、結(jié)構(gòu)化的科學(xué)數(shù)據(jù)資產(chǎn),并利用AI進(jìn)行深度挖掘與生成,有望在全新的分子發(fā)現(xiàn)、性質(zhì)預(yù)測(cè)、反應(yīng)路徑設(shè)計(jì)等方面取得突破,最終推動(dòng)科學(xué)研究范式的根本性變革。
此次成功實(shí)踐,也為面臨類似多模態(tài)、大數(shù)據(jù)挑戰(zhàn)的生物制藥、能源材料、計(jì)算化學(xué)等廣大科研與工業(yè)領(lǐng)域,提供了可借鑒的數(shù)字化轉(zhuǎn)型路徑。它證明,一個(gè)設(shè)計(jì)優(yōu)良的數(shù)據(jù)湖,能夠成為釋放數(shù)據(jù)潛能、加速科技創(chuàng)新的核心基礎(chǔ)設(shè)施。